Deep-Gauss constant: The deep-gauss constant (denoted `g_d`) is a transcendental mathematical constant representing the value of the standard normal deviate with an equivalent standard deviation in a standard normal distribution. Only one such value exists. Infinite nesting of Gaussian functions. `PDF(x) = x` Solution to `sqrt(-2ln(x)) = e^(-x^2/2) = x` `sqrt(Omega)` where `Omega` is the omega constant Mathematica: N[Sqrt[ProductLog[1]], 100] May be calculated efficiently using Newton iteration. 0.753089164979674815796583362806350249743131750732524340813685844647225055609954728947071378202743825 Deeper-Gauss constant: The only value such that the probability according to the standard normal function is equal to the standard deviation. `CDF(x) = x` `1/2 erf(x / sqrt(2)) + 1/2 = x` 0.783263929995929012648770847268103403231048133095485687445057379819632222390583200277636422370964984 Area under odd tetration of Gaussian functions: Indefinite integral of `g(x)^{g(x)^{g(x)...}}` where `g(x) = e^(-x^2/2)` an odd number of times Mathematica: PowerTower[a_, k_Integer] := Nest[Power[a, #] &, 1, k] NIntegrate[PowerTower[E^(-x^2/2), 10001], {x, -8, 8}] 3.23738 Elevation of area bifurcation of the Gaussian function: The y-coordinate of the horizontal line on the standard Gaussian function which divides the area into two equal halves. Value of a such that the `int_-oo^oo max(e^(-x^2/2) - a, 0) dx = sqrt(pi/2)` Mathematica: Sqrt[Pi/2]-NIntegrate[Max[Exp[-x^2/2]-v,0] == 0 0.30636228415302713294 Balance point of the Gaussian function: The height of the center of gravity of the standard Gaussian function. Value of h such that `int_0^1 (x - h)*e^(-x^2/2)=0` `1 / (2 sqrt(2))` Mathematica: 1/(2*Sqrt[2]) OEIS A020765 0.353553390593273762200422181052424519642417968844237018294169934497683119615526759712596883581910393 Solution to `sin(x)=x-1`: Mathematica: FindRoot[Sin[x]+1==x,{x,1.5}] 1.934563210752024267563261453768850027623302849353341290328231795541351269445927283100778722332410744 Solution to `cos(x)=x-1`: Mathematica: FindRoot[Cos[x]==x-1,{x,1.5}] 1.283428741745765316797130600633044743705435627207677051364715283693170638284330854619597152925448185 The Dottie number: Solution to `cos(x) = x` Solution to arccos(x) = cos(x) Mathematica: FindRoot[Cos[x]==x,{x,1.5}] OEIS A003957 0.739085133215160641655312087673873404013411758900757464965680635773284654883547594599376106931766531 Solution to `tan(x) = x+1`: Mathematica: FindRoot[Tan[x]==x+1,{x,1.0}] 1.132267725272885131625420696936001741528834429928502705956972230605059852849012697659932903448039734 Solution to `csc(x) = x+1`: Mathematica: FindRoot[Csc[x]==x+1,{x,0.6}] 0.650751677964222006596404299979381935013853770031835224755443352442640151577649697854940226946445635 Solution to `cos(x) = tan(x)` near zero: Solution to `(cos(x))^2 = sin(x)` Mathematica: FindRoot[Cos[x]==Tan[x],{x,0.6}] OEIS A175288 0.6662394324925152551040048959777927206674901387259478428314738428039789893790592817079068311695811353 Lower bound of radius of convergence of `x!!!!!...` near `-0.56`: Range of convergence is approximately `(-0.5571, 2]` Equal to the inverse factorial of 2 near `x=-0.56` Mathematica: FindRoot[(x!)==2,{x,-0.56}] -0.5571226035152725625479674834793943282896354619336335970087692801041475177158259195922990622701551779 Statistical deep-gauss constant (denoted `k`): Solution to `e^(-x^2/2)/sqrt(2pi) = x` Infinite nesting of Gaussian functions normalized to an area of 1. `sqrt(LambertW(1/(2pi)))` Mathematica: N[Sqrt[ProductLog[1/(2*Pi)]], 100] May be calculated efficiently using Newton iteration. 0.3722388980356186389429106469095330269078295289174196538739184756542884705209392543696106849303749431 Classical deep-gauss constant: Solution to `e^(-x^2)/sqrt(pi) = x` Infinite nesting of Gaussian functions normalized to an area of 1, with variation = 1/2. `sqrt(1/(2pi))` Mathematica: N[Sqrt[ProductLog[2/Pi]/2], 100] May be calculated efficiently using Newton iteration. 0.4575990762801477482110264370524857730600883392737928050972231875124445284808864507994380937381909696 Elevation such that the area of the Gaussian function under the elevation equals 1 - elevation: Value of h such that `sqrt(2pi) - int_-sqrt(-2ln(1-h))^sqrt(-2ln(1-h)) e^(-x^2/2)-(1-h) dx = h` Mathematica: g[a_]:=Sqrt[2*Pi]-NIntegrate[E^(-x^2/2)-a,{x,-Sqrt[-2*Log[a]],Sqrt[-2*Log[a]]},WorkingPrecision->100]; N[b/. FindRoot[g[1-b]==b,{b,0.5},WorkingPrecision->100],100] 0.8215310678569499228996492062017322084477204695805055009194784666597653442831791413630644985491548807 Global maximum of first derivative of Gaussian function: `1/sqrt(e)` Mathematica: 1/Sqrt[E] OEIS A092605 0.6065306597126334236037995349911804534419181354871869556828921587350565194137484239986476115079894560 Global maximum of second derivative of Gaussian function: `2/e^(2/3)` Mathematica: 2/E^(3/2) 0.4462603202968596578665609415280250426843432587221586574876706375206503332626288823551274606651551816 Global maximum of third derivative of Gaussian function: `e^(1/2(-3 + sqrt(6)))sqrt(6(3 - sqrt(6)))` Mathematica: Sqrt[6 (3-Sqrt[6])] E^(1/2 (-3+Sqrt[6])) 1.380119046160749111716612383227940318094682174207461803870163787656101914967089235003328880724784629 X coordinate of global maximum of third derivative of Gaussian function: `sqrt(3 - sqrt(6))` Mathematica: Sqrt[3-Sqrt[6]] 0.7419637843027258576485135967263602248295201475089189536114738789949997546500052952140537804671914252 Infinite summation of `1/(n^n)`: Also known as "Sophomore's Dream" `sum_{n=1}^oo 1/(n^n)` Mathematica: Sum[1/(n^n),{n,1,Infinity}] OEIS A073009 1.291285997062663540407282590595600541498619368274522317310002445136944538765234455558817041129429709 X coordinate of `tan(x) = cos(x)` near 0.6 Value of x such that `tan(x) = cos(x)` near 0.6 `arcsin((sqrt(5)-1)/2) = arcsin(phi-1) = arcsin(1/phi)` where `phi` is the golden ratio Mathematica: ArcSin[GoldenRatio-1] OEIS A175288 0.6662394324925152551040048959777927206674901387259478428314738428039789893790592817079068311695811353 Y coordinate of `tan(x) = cos(x)` near 0.6 Cosine or tangent of x such that `tan(x) = cos(x)` near 0.6 `tan(arcsin((sqrt(5)-1)/2)) = tan(arcsin(phi-1)) = cos(arcsin(phi-1) = sqrt(1-(phi-1)^2)` where `phi` is the golden ratio Mathematica: Tan[ArcSin[GoldenRatio-1]] OR Cos[ArcSin[GoldenRatio-1]] OR Sqrt[1-(GoldenRatio-1)^2] OEIS A197762 0.7861513777574232860695585858429589295231220578377232376649019701011820476223109137119128891585081356 First ten positive solutions to `x = csc(x)` First ten positive X and Y coordinates of intersection between `y=x` and `y=csc(x)` Mathematica: N[x/.FindRoot[x==Csc[x],{x,#},WorkingPrecision->100],100]&/@{1.1,2.8,6.4,9.3,12.6,15.6,18.9,21.9,25.2,28.2} OEIS A133866 (for the first solution only) 1.114157140871930087300525178169203903954101376049375595337370555351019135450088826340464542817468949 2.772604708265991233953569721499279279322291225726785124329373158751894369005509293834845203192641825 6.439117238417246461724514840310879478656965054672609119153022903155477936959362644122838634851535248 9.317242941414809618601288513569511562449802182373635824335817177562093145056972653015421016315005368 12.64553257878910795240798538668067580398251798321028736603345183871121377161491841458998521879709135 15.64399737477314310180879264382812549863234072011157728642015901473289124731152616052576798512861511 18.90248373034244521760822967518209890277839177145978851539504303116477143307622122042002496265168765 21.94556549881968413352034035301547665667286719107257346703874804220094173195602758881297955883643044 25.17247761173437938733130203570685958875462290028172162507415108847817178157524858477515029963796502 28.23891435063900153941345335992077895624552020488688575034400582097258728370022198431175041116816101 First ten positive solutions to `x = tan(x)`: First ten positive roots of the tanc function (see MathWorld, Tanc Function) X and Y coordinates of intersection between `y=x` and `y=tan(x)` Mathematica: N[x/.FindRoot[x==Tan[x],{x,#},WorkingPrecision->100],100]&/@{4.5,7.7,10.9,14.0,17.22,20.4,23.5,26.7,29.8,32.9} OEIS A115365 (first solution) OEIS A255272 (second solution) 4.493409457909064175307880927280322082215583872290040802895823961926950314597104098729057809455879692 7.725251836937707164195068933062986626378159304610791186649328216729645001682688816184504845740695787 10.90412165942889982714870279018868387209485885781875858875838037854152403129767924534795971449299529 14.06619391283147347997896560060156499694237831509622273835055936239790678068662399708995660145597824 17.22075527193076873957371892506096229893332971829167936478403467046043142257400443881724600687007969 20.37130295928756284509100440543504575049474077627828310900472481472406399769752471312034311206721095 23.51945249868900654645110203911830424635003114823871066842675410735279392086189788831563784209112032 26.66605425881267352839414354427355510035094967713474434380833716343936396570339416811983469926519861 29.81159879089295883681058812719248542381985582067960421020287818369901454045657431457801550155387214 32.95638903982247672529905648511000477277068028983182458330416774436300013420899180523883684352187886 First ten positive solutions to `tan(x) = arctan(x)`: X coordinates of intersection between `y=tan(x)` and `y=arctan(x)` Mathematica: Do[Print[N[x/.FindRoot[ArcTan[x]==Tan[x],{x,i},WorkingPrecision->100],100]],{i,4,Pi*11,Pi}] 4.067588865765862790917085025312411319068300674493957922637263436551465862660547101559028237704400117 7.244916979143423162128851608909041331842892378156524425323576343777403305384206366724156490826807976 10.39976929174371930405907564111851697598172656638934331811382119198533728423681943572174118400577866 13.54827694405954058495330601924441706870943461727181539607718809690811484000127196361383133772963852 16.69411428341000770067177353892660776364922715630448263835203166738729287107339853979265293824247756 19.83857763666212886481840336509319406712959936294659743758139982258975909320943020972277444943680702 22.98224115529880631878536875493410196445318251794518737318720553673262176981144465603465527703838756 26.12539822043640316400897413208107378179301792451908868463822083429805684715838262660376286494809566 29.26821436776660446929644858615114305285095418763229607502500523035319097842376205260885502218317458 32.41079008240094902391080855928580456854838496665698904277246524869031674587421418059832814570681321 Area under `tan(tan(x))` between 0 and 1: Mathematica: N[NIntegrate[Tan[Tan[x]],{x,0,1},WorkingPrecision->100],100] 1.650310610726968108967907066271364240999490509346991959943053356050282006630973331053353071780822272 Infinite product of `1+1/n^2`: `prod_{n=1}^oo (1+1/n^2)` Limit of recursive function `f_{n+1} = f_n + f_n / (n+1)^2` where `f_0=1` as n approaches infinity `sinh(pi)/pi = e^pi/(2pi) - e^(-pi)/(2pi) = 1/(picsch(pi)) = int_0^1 cosh(pix) dx` Mathematica: Sinh[Pi]/Pi 3.676077910374977720695697492028260666507156346827630277478003593557447324111022073213255926590323023 Infinite product of `1+1/2^n`: `prod_{n=1}^oo (1+1/2^n)` `1 / (1 - P)` where `P` is the Pell constant Mathematica: N[Product[1+1/2^n,{n,1,Infinity}],100] 2.384231029031371724149899288678397238771619516508433457692101507989181293036037255186535210365680520 Infinite product of `1+1/e^n` `prod_{n=1}^oo (1+1/e^n)` Mathematica: N[Product[1+1/E^n,{n,1,Infinity}],100] 1.677928684989354197439072369836846846820834870876556493041873514464050933830679696121607677171839395 Infinite product of `1+1/n!` `prod_{n=1}^oo (1+1/n!)` Mathematica: N[Product[1+1/n!,{n,1,90}],100] 3.682154136183628628186386254815526547827128418034453830396277476848119082203811990990702528185740895 Infinite sum of `n^-n` `sum_{n=1}^oo (n^-n)` Mathematica: N[Sum[n^-n,{n,1,100}],100] 1.291285997062663540407282590595600541498619368274522317310002445136944538765234455558817041129429709